STATISTICAL CONSIDERATIONS FOR
SEQUENTIAL, MULTIPLE ASSIGNMENT,
RANDOMIZED (SMART) TRIALS

Sasha Kravets, MA, Ph.D. Student

Division of Epidemiology and Biostatistics
School of Public Health
University of Illinois at Chicago

April 25, 2021
In collaboration with:

Amy S. Ruppert Stark, Ph.D.
Division of Hematology, The Ohio State University

Jennifer G. Le-Rademacher, Ph.D.
Department of Quantitative Health Sciences, Mayo Clinic

Sumithra J. Mandrekar, Ph.D.
Department of Quantitative Health Sciences, Mayo Clinic
Outline

- Introduction
- SMART Framework
- Design Elements
- Power and Sample Size
- Example
- Simulation Results
- Conclusions
Goal: Compare adaptive treatment interventions, in which intermediate outcomes guide subsequent treatment decisions for individual patients

Notation:
- X - First stage treatment indicator (0,1)
- R - Tailoring variable result indicator (0,1)
- Z - Second stage treatment indicator (0,1)
SMART Framework

Adaptive Treatment Interventions:

(1,1): First Stage X=0; Second Stage Z=0 for R=0 and R=1
(2,1): First Stage X=1; Second Stage Z=0 for R=0 and R=1
(2,2): First Stage X=1; Second Stage Z=0 for R=0 and Z=1 for R=1
SMART Framework

- An individual patient can be consistent with more than one adaptive regimen
- Patients part of $Z=1$ of the third adaptive intervention are under-represented and bias intent-to-treat comparisons between the adaptive interventions
- Restricted re-randomization
Design Elements

- Randomization Ratios
Randomization Ratios

- Allow for different choice of randomization probabilities in both first and second stage treatment assignments
Randomization Ratios
- Allow for different choice of randomization probabilities in both first and second stage treatment assignments

Weights
Design Elements

- Randomization Ratios
 - Allow for different choice of randomization probabilities in both first and second stage treatment assignments

- Weights
 - Account for the restricted re-randomization
Design Elements

- **Randomization Ratios**
 - Allow for different choice of randomization probabilities in both first and second stage treatment assignments

- **Weights**
 - Account for the restricted re-randomization
 - Inverse of the randomization probabilities, across all stages
Design Elements

- **Randomization Ratios**
 - Allow for different choice of randomization probabilities in both first and second stage treatment assignments

- **Weights**
 - Account for the restricted re-randomization
 - Inverse of the randomization probabilities, across all stages

- **Piece-wise hazard rates**
Design Elements

- **Randomization Ratios**
 - Allow for different choice of randomization probabilities in both first and second stage treatment assignments

- **Weights**
 - Account for the restricted re-randomization
 - Inverse of the randomization probabilities, across all stages

- **Piece-wise hazard rates**
 - Partition assumed hazard rate into two intervals: prior to the intermediate assessment, and after the intermediate assessment
Power and Sample Size

Power via Simulation

- Time-to-event distributions of adaptive treatment interventions are compared using a weighted robust score test.
- If test is in favor of adaptive treatment interventions of interest and the one-sided p-value from robust score test ≤ 0.025, superiority is claimed.
- Repeated 10000 times for each comparison.
- Power is the number of times superiority was achieved, out of the 10000 simulations.
SMART Example

Previously published a SMART to identify an optimal treatment strategy in older patients with chronic lymphocytic leukemia (CLL)*.

First stage randomization 1:1, Second stage randomization 1:1
MRD- CR, IO: 10%, MRD- CR, IVO: 50%

Hazard Rate

<table>
<thead>
<tr>
<th></th>
<th>IO</th>
<th>IO with IM</th>
<th>IO with IM</th>
<th>IVO</th>
<th>IVO with IM</th>
<th>IVO with IM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not MRD-CR</td>
<td>MRD-CR</td>
<td></td>
<td>Not MRD-CR</td>
<td>MRD-CR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.071</td>
<td>0.075</td>
<td>0.050</td>
<td>0.039</td>
<td>0.0375</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Ruppert et al (2019)
Impact

- **Randomization Ratios**

<table>
<thead>
<tr>
<th>First Stage Randomization</th>
<th>1:1</th>
<th>1:1</th>
<th>1:1</th>
<th>1:2</th>
<th>1:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Stage Randomization</td>
<td>1:1</td>
<td>1:2</td>
<td>1:3</td>
<td>1:1</td>
<td>1:2</td>
</tr>
<tr>
<td>Power</td>
<td>0.843</td>
<td>0.803</td>
<td>0.780</td>
<td>0.553</td>
<td>0.479</td>
</tr>
</tbody>
</table>

- **Weights**

<table>
<thead>
<tr>
<th>1st Stage</th>
<th>2nd Stage</th>
<th>Consider 1st stage?</th>
<th>SE</th>
<th>Robust SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1:1</td>
<td>N</td>
<td>0.1788</td>
<td>0.2001</td>
</tr>
<tr>
<td>1:1</td>
<td>1:1</td>
<td>Y</td>
<td>0.1264</td>
<td>0.2001</td>
</tr>
<tr>
<td>1:1</td>
<td>1:2</td>
<td>N</td>
<td>0.1654</td>
<td>0.1771</td>
</tr>
<tr>
<td>1:1</td>
<td>1:2</td>
<td>Y</td>
<td>0.1169</td>
<td>0.1771</td>
</tr>
<tr>
<td>1:2</td>
<td>1:1</td>
<td>N</td>
<td>0.1619</td>
<td>0.1742</td>
</tr>
<tr>
<td>1:2</td>
<td>1:1</td>
<td>Y</td>
<td>0.1156</td>
<td>0.1839</td>
</tr>
</tbody>
</table>
Conclusions

- SMART designs allow to estimate not only can stage-specific treatment effects, but also sequential treatment effects.
- Overview of design considerations show flexibility and usefulness of a SMART.
- R code available and RShiny app on the way.
SMART Design Bin/TTE Simulations

Design
- Sample Size
- Power

Hazard Rate Assumption
- Constant
- Piecewise

Type I Error
0.05

Beta
0.2

Time of New Interval (Years)
1

1st Stage Randomization: Treatment 1
0.5

2nd Stage Randomization: Treatment 1
0.5

Minimum Censoring Time
0.5

Maximum Censoring Time
0.5

Treatment 1

Overall HR1
1

HR for non-responders
0.8

Response time for responders
0.8

Post-response HR for Treatment 1
0.9
Thank you

Sasha Kravets, MA, Ph.D. Student
Division of Epidemiology and Biostatistics
School of Public Health
University of Illinois at Chicago

skrave2@uic.edu
Appendix: Piece-wise Hazard Rate Data Generation

- **Piece-wise Hazard Rate assumption**
 - Partition assumed hazard rate into two intervals: prior to the intermediate assessment, and after the intermediate assessment

- **Data Generation:**
 - Generate event times from an exponential distribution with respective overall group hazard rates
 - Intermediate assessment is conducted
 - Patients whose event times are less than the time of the intermediate assessment are considered non-responders
 - Of the patients who make it to the intermediate assessment, proportions of those who will be responders or non-responders will be split based on hypothesized response rates
 - Generate new event times for each group based on hypothesized increased or decreased in hazard rate